OCR Maths FP1 Topic Questions from Papers Roots of Polynomial Equations Answers

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com

	1	(a) (i) $\alpha + \beta = 2$ $\alpha\beta = 4$	B1B1	2	Values stated
PMT		(ii) EITHER $\alpha^{2} + \beta^{2} = -4$ - OR (iii)	M1 A1 M1 A1	2	Use $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ Obtain given answer correctly Find numeric values of roots, square and add Obtain given answer correctly
		$x^{2} + 4x + 16 = 0$	B1		State or use $\alpha^2 \beta^2 = 16$
		– (b) (i) <i>p</i> = 2	M1 A1	3	Or use substitution $u = x^2$ Write down a quadratic equation of correct form or rearrange and square Obtain $x^2 + 4x + 16 = 0$
		(ii) <i>a</i> = 44	M1 A1	2	Use sum or product of roots to obtain $6p = 12$ Or $6p^3 = 48$ Obtain $p = 2$
			M1 A1ft	2	Attempt to find $\sum \alpha \beta$ numerically or in terms of <i>p</i> or substitute their 2, 4 or 6 in equation Obtain 11p ²
				11	

_

(Q8, June 2005)

2	$u^2 + 4u + 4$	B1		u + 2 squared and cubed correctly
	$u^3 + 6u^2 + 12u + 8$			
	$u = \sqrt[3]{5}$ $x = 2 + \sqrt[3]{5}$	M1 A1 A1ft A1ft	5 5	Substitute these and attempt to simplify Obtain $u^3 - 5 = 0$ or equivalent Correct solution to their equation Obtain 2 + their answer [Decimals score 0/2 of final A marks]

(Q4, Jan 2006)

PhysicsAndMathsTutor.com

· · · · · ·		1	1	
3	(i) $\alpha + \beta + \gamma = 9$ (ii)	B1 B1 M1	1	State or use other root is $p - iq$
	$p = \frac{9 - \alpha}{2}$	A1 A1	4	Obtain $2p + \alpha = 9$ Obtain correct answer a.e.f.
	(iii) $\alpha\beta\gamma = 29$	B1	1	
	(iv) $\alpha(p^2 + q^2) = 29$	M1 A1ft		Substitute into (iii) Obtain unsimplified expression with no i's
		M1		Rearrange to obtain q or q^2
	2	M1		Substitute their expression for <i>p</i> a.e.f.
	$q = \sqrt{\frac{29}{\alpha}} - \frac{(9-\alpha)^2}{4}$	A1	5	Obtain correct answer a.e.f.
	'α 4		11	
	(iv) Alternative method $2p\alpha + p^2 + q^2 = 27$	M1 A1		Substitute into $\alpha\beta + \beta\gamma + \gamma\alpha = 27$ Obtain unsimplified expression with no i's
		M1		Rearrange to obtain q or q^2
	$\left[\left(0 - \alpha \right)^2 \right]$	M1		Substitute their expression for <i>p</i> a.e.f.
	$q = \sqrt{27 - \frac{(3-\alpha)}{4}} - \alpha(9-\alpha)$	A1		Obtain correct answer a.e.f.

ΜT

 ∞

(Q10, Jan 2006)

4	(i) 2 + 3i	B1	1	Conjugate seen
1	(ii)	M1		
	n = 4	A1 M1 A1		Attempt to sum roots or consider x terms in expansion or substitute 2 – 3i into equation and equate imaginary parts Correct answer
	p = -4			Attempt at product of roots or consider last
			4	term in expansion or consider real parts Correct answer
	q = 13		5	

(Q3, June 2006)

5	(i) $\alpha + \beta + \gamma = 2$ $\alpha\beta\gamma = -4$	B1 B1		Write down correct values
	$\alpha\beta + \beta\gamma + \gamma\alpha = 3$	B1	3	
	(ii)	M1		Sum new roots
	$\alpha + 1 + \beta + 1 + \gamma + 1 = 5$	A1ft		Obtain numeric value using their (i)
	<i>p</i> = -5	A1ft	3	<i>p</i> is negative of their answer
	(iii)	M1*		Expand three brackets
		A1		$\alpha\beta\gamma + \alpha\beta + \beta\gamma + \gamma\alpha + \alpha + \beta + \gamma + 1$
		DM1		Use their (i) results
		A1ft		Obtain 2
	<i>q</i> = -2	A1ft	5	q is negative of their answer
		M2 A1 M1 A2 A1 A1	11	Alternative for (ii) & (iii) Substitute $x = u - 1$ in given equation Obtain correct unsimplified equation for u Expand Obtain $u^3 -5u^2 + 10u - 2 = 0$ State correct values of p and q .

(Q10, June 2006)

(i) $\alpha + \beta = -5$ $\alpha\beta = 10$	B1 B1	2	State correct values
(ii) $\alpha^2 + \beta^2 = 5$	M1		Use $(\alpha + \beta)^2 - 2\alpha\beta$
	A1	2	Obtain given answer correctly, using value of -5
(iii)	B1		Product of roots = 1
	M1		Attempt to find sum of roots
	A1		Obtain $\frac{5}{10}$ or equivalent
$x^2 - \frac{1}{2}x + 1 = 0$	B1ft	4	Write down required quadratic
		8	equation, or any multiple.
	(i) $\alpha + \beta = -5$ $\alpha\beta = 10$ (ii) $\alpha^2 + \beta^2 = 5$ (iii) $x^2 - \frac{1}{2}x + 1 = 0$	(i) $\alpha + \beta = -5$ $\alpha\beta = 10$ (ii) $\alpha^{2} + \beta^{2} = 5$ (iii) B1 (iii) B1 M1 A1 B1 M1 A1 A1 A1 A1 B1 M1 A1 B1 B1 M1 A1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B	(i) $\alpha + \beta = -5$ $\alpha\beta = 10$ (ii) $\alpha^{2} + \beta^{2} = 5$ (iii) $A^{2} + \beta^{2} = 5$ (iii) $A^{1} = A^{2} = A^{2}$

(Q7, Jan 2007)

PMT	7	(i) (a) $\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$ (b)	B1 B1	2	State correct values
		(i) $\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)^{2} = 9 - 4 = 5$ $= 9 - 4 = 5$ (ii) (a) $\frac{3}{u^{3}} - \frac{9}{u^{2}} + \frac{6}{u} + 2 = 0$ $2u^{3} + 6u^{2} - 9u + 3 = 0$ $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$ (b)	 M1 A1 ft M1 A1 M1 A1 M1 A1ft 	2 2 2 8	State or imply the result and use their values Obtain correct answer Use given substitution to obtain an equation Obtain correct answer Required expression is related to new cubic stated or implied -(their "b" / their "a")

(Q6, June 2007)

8	(i) $7u^3 + 24u^2 - 3u + 2 = 0$	M1 A1	2	Use given substitution Obtain correct equation a.e.f.
	(ii) <i>EITHER</i> correct value is $-\frac{3}{7}$	M1 A1ft	2	Required expression related to new cubic Their c / their a
	OR	M1		Use $\frac{\alpha + \beta + \gamma}{\alpha\beta\gamma}$ or equivalent
	correct value is $-\frac{3}{7}$	A1	4	Obtain correct answer

(Q3, Jan 2008)

	9	(i)	$\alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$	M1 A1	2	Correct binomial expansion seen Obtain given answer with no errors seen
		(ii)	Either $\alpha + \beta = 5, \alpha\beta = 7$	B1 B1		State or use correct values
			$\alpha^3 + \beta^3 = 20$	M1 A1		Find numeric value for $\alpha^3 + \beta^3$ Obtain correct answer
PMT				M1	6	Use new sum and product correctly in quadratic expression
			$x^2 - 20x + 343 = 0$	A1ft M1 A1	8	Obtain correct equation Substitute $x = u^{\frac{1}{3}}$
			$0r \\ u^{\frac{2}{3}} - 5u^{\frac{1}{3}} + 7 = 0$	M2 A2		Complete method for removing fractional powers
			$u^3 - 20u + 343 = 0$			Obtain correct answer

(Q9, Jan 2008)

10 (i)	3 – i	B1 Conjugate stated
- ()		1
(ii)	EITHER	M1 Use sum of roots
		A1 Obtain correct answer
		M1 Use sum of pairs of roots
		A1 Obtain correct answer
		M1 Use product of roots
	a = -8, b = 22, c = -20	A1 Obtain correct answers
		6
	OR	M1 Attempt to find a quadratic factor
		A1 Obtain correct factor
		M1 Expand linear and guadratic factors
	a = -8, b = 22, c = -20	A1A1A1 Obtain correct answers
	OR	
		M1 Substitute 1 imaginary & the real root into equ
		M1 Equate real and imaginary parts
		M1 Attempt to solve 3 eqns.
	a = -8, b = 22, c = -20	A1A1A1 Obtain correct answers

(Q6, June 2008)

11
$$\alpha + \beta = -k$$
B1State or use correct value $\alpha\beta = 2k$ **B1**State or use correct value**M1**Attempt to express sum of new roots in
terms of $\alpha + \beta$, $\alpha\beta$ $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$ **A1** $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{1}{2}(k-4)$ **A1** $\alpha'\beta' = 1$ **B1** $x^2 - \frac{1}{2}(k-4)x + 1 = 0$ **B1ftB1ft**Obtain correct answer, must be an eqn. $\boxed{2}$ $\boxed{2}$ $\frac{\alpha}{\beta}$ in terms of k and
 α or k and β **A1**Obtain a correct expression**A1**Obtain a correct expression $\frac{\alpha}{\beta}$ in terms of k and
 α or k and β **A1**Obtain a correct expression**A1**Obtain correct answer

1T

(Q8, June 2008)

12	(i)		M1	2	Expand at least 1 of the brackets
	(ii)	$\alpha + \beta = 6k, \alpha\beta = k^{2}$ $\alpha - \beta = (4\sqrt{2})k$	A1 B1 B1 M1 A1	2	State or use correct values Find value of $\alpha - \beta$ using (i) Obtain given value correctly (allow if $-6k$ used)
	(iii)	$\sum \alpha' = 6k$	B1ft	4	Sum of new roots stated or used
		$\alpha' \beta' = \alpha \beta - (\alpha - \beta) - 1$	M1		Express new product in terms of old roots
		$\alpha'\beta' = k^2 - (4\sqrt{2})k - 1$	A1ft		Obtain correct value for new product
		$x^{2} - 6kx + k^{2} - (4\sqrt{2})k - 1 = 0$	B1ft	4	Write down correct quadratic equation
				10	

(Q8, Jan 2009)

13	Either $p + q = -1, pq = -8$	B1		Both values stated or used
	$\frac{p+q}{pq}$	B 1		Correct expression seen
	$-\frac{7}{8}$	M1 A1	4	Use their values in their expression Obtain correct answer
	Or $\frac{P_1}{p} + \frac{1}{q} = 8$	B1	4	Substitute $x = \frac{1}{u}$ and use new guadratic
	p + q = 1	B1		Correct value stated
	$-\frac{7}{8}$	M1 A1		Use their values in given expression Obtain correct answer
	Or $\frac{-1\pm\sqrt{33}}{2}$	M1		Find roots of given quadratic equation
		A1		Correct values seen
	$-\frac{7}{8}$	M1		Use their values in given expression
	0	A1		Obtain correct answer

1T

(Q4, June 2009)

14	(i) $u^3 = \{(-)(5u+7)\}^2$	M1 A1		Use given substitution and rearrange Obtain correct expression, or equivalent
	$u^3 - 25u^2 - 70u - 49 = 0$	A1	3	Obtain correct final answer
	(ii)	M1		Use coefficient of <i>u</i> of their cubic or identity connecting the symmetric functions and substitute values from given equation
	-70	A1 ft	2 5	Obtain correct answer

(Q5, June 2009)

15 (i)	$u^{3} - 3u^{2} + 3u - 1$ $2u^{3} - 6u^{2} + 9u - 8 = 0$	B1 M1 A1	3	Correct unsimplified expansion of $(u-1)^3$ Substitute for <i>x</i> Obtain correct equation
(ii)	4	M1 A1ft	2	Use $(\pm)\frac{d}{a}$ of new equation Obtain correct answer from their equation
		5		

16 (i)		B1 State	e or use 5 + i as a root
		M1 Use	$\sum \alpha \beta = 6$
	x = -2	A1 3 Obta	in correct answer
(ii)	Either	M1 Use	$p = -\sum \alpha$
	p = -8	A1ft Obta	in correct answer, from their root
		M1 Use	$q = -\alpha\beta\gamma$
	<i>q</i> = 52	Alft 4 Obta	in correct answer, from their root
	Or	M1 Atte	mpt to find quadratic factor
		M1 Atte	mpt to expand quadratic and linear
		A1A1 Obta	in correct answers
	Or	M1 Subs	stitute (5 – i)into equation
		M1 Equa	ate real and imaginary parts
		A1 Obta	nin correct answer for p
		Alft Obta	ain correct answer for q , ft their p
		7	

(Q6, Jan 2010)

17 *Either* $\alpha + \beta = -2k \quad \alpha\beta = k$

PMT

 $y^2 - 4ky + 4k = 0$

$$\alpha + \beta = -2k$$
$$\frac{-2k}{\alpha}$$
$$y = \frac{-2k}{x}$$

 $y^2 - 4ky + 4k = 0$

0r

$$\frac{-k \pm \sqrt{k^2 - k}}{\alpha} = \frac{2k}{k + \sqrt{k^2 - k}}, \frac{\alpha + \beta}{\beta} = \frac{2k}{k - \sqrt{k^2 - k}}$$

 $y^2 - 4ky + 4k = 0$

B1B1 M1 A1 M1	State or use correct results Attempt to find sum of new roots Obtain $4k$
Al	Obtain $4k$
BIIT 7	Correct quadratic equation a.e.i.
B1	State or use correct result
B1	State or imply form of new roots
B1	State correct substitution
M1	Rearrange and substitute for <i>x</i>
AI M1	Attempt to clear fractions
A1	Correct quadratic equation a.e.f.
B1	Find roots of original equation
B1	Express both new roots in terms of k

- M1 Attempt to find sum of new roots
- A1 Obtain 4k
- M1 Attempt to find product of new roots
- A1 Obtain 4*k*
- B1ft Correct quadratic equation a.e.f.

18 (i) EitherB1State or use both correct results in (i) or (ii)
$$\alpha + \beta = \frac{1}{2}, \alpha\beta = \frac{3}{2}$$
B1State or use both correct results in (i) or (ii) $\alpha + \beta + \frac{\alpha + \beta}{\alpha\beta}$ or $\alpha + \beta + \frac{2}{3}(\alpha + \beta)$ M1Express sum of new roots in terms of
 $\alpha + \beta$ and $\alpha\beta$ $p = \frac{5}{6}$ M1Substitute their values into their expression $p = \frac{5}{6}$ A14OrB1Substitute $x = \frac{1}{u}$ and obtain correct
quadratic (equation) $p = \frac{5}{6}$ A1Obtain given answer correctly $p = \frac{5}{6}$ A1Obtain given answer correctly(ii) $\alpha'\beta = \alpha\beta + \frac{1}{\alpha\beta} + \frac{\beta}{\alpha} + \frac{\alpha}{\beta}$ B1Correct expansion $\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$ M1Show how to deal with $\alpha^2 + \beta^2$ (ii) $q = \frac{1}{3}$ M1Substitute their values into $\alpha'\beta'$ $q = \frac{1}{3}$ M1Substitute their values into $\alpha'\beta'$ $(28, Jan 2011)$ $(28, Jan 2011)$

Т

19 (i)	16 + 30i	B1	1	State correct value
(ii)		M1		Use $a = -$ (sum of roots)
	a = -32	A1		Obtain correct answer
		M1		Use $b =$ product of roots
	<i>b</i> = 1156	A1	4	Obtain correct answer
		M1		Substitute, expand and equate imag. parts
		A1		Obtain $\mathbf{a} = -32$
		M1		Equate real parts
		A1		Obtain $b = 1156$

(Q9, June 2011)

РМТ

$$\frac{1}{u^{\frac{3}{2}}} + \frac{3}{u} + 2 = 0$$
B1
Use substitution correctly
EITHER
M1
Rearrange
M1
Square
A1
Obtain correct equation
4u^{3} + 12u^{2} + 9u - 1 = 0
A1
5
Obtain given answer
OR
e. g. $(2u^{\frac{3}{2}} + 3u^{\frac{1}{2}} + 1)(2u^{\frac{3}{2}} + 3u^{\frac{1}{2}} - 1) = 0$
H2
Multiply their equation in u by appropriate
related expression
A2
Obtain given answer
(i)
B1
Stated or imply that $u = \frac{1}{x^{2}}$
M1
Use $-\frac{b}{a}$
A1
Obtain correct answer
M1
Use $\frac{c}{a}$
A1
S
Obtain correct answer
M1
Use $\frac{c}{a}$
A1
S
Obtain correct answer
(i)

(Q10, June 2011)

21	(i)	$\alpha + \beta + \gamma = 3$ $\alpha\beta + \beta\gamma + \gamma\alpha = 2$ $\alpha\beta\gamma = -\frac{2}{3}$	B1 B1 B1 [3]	State correct value State correct value State correct value	
	(ii)	EITHER	M1	$c = (\pm)\alpha^2 \beta^2 \gamma^2$	
		$c = -\frac{4}{9}$	A1FT	Obtain given correct answer	FT for sign error in (i)
		$\sum \alpha^2 = (\sum \alpha)^2 - 2\sum \alpha \beta$	M1	Use correct expression	
		$5 a = -5 \sum \alpha^2 \beta^2 = (\sum \alpha \beta)^2 - 2\alpha \beta \gamma \sum \alpha$	A1FT A1FT M1* A1	Obtain correct value Obtain answer correctly Attempt to find an identity Obtain correct identity	FT for sign error in (i) Sign change done correctl
		<i>b</i> = 8 OR	DM1 A1 [9]	Use appropriate values Obtain correct answer cao	
		$9y^3 - 45y^2 + 72y - 4 = 0$	B1 M1 DM1 DM1 A1	State or use correct substitution Rearrange, fractional indices isolated Square both sides Expand and simplify Obtain correct equation	
		$c = -\frac{4}{9}$	M1 A1	Use coefficients of their cubic Obtain given answer correctly	
		a = -5 b = 8	A1FT A1FT	Obtain correct answer Obtain correct answer SC mixture of methods only A1FT for <i>a</i> and <i>b</i>	

PhysicsAndMathsTutor.com

22	EITHER			
		M1	Use sum of root and conjugate	
	a = -8	A1	Obtain correct answer	
		M1	Use product of root and conjugate	
	<i>b</i> = 25	A1	Obtain correct answer	
		[4]		
	OR			
		M1	Substitute 4+3i or conjugate into equation	
		M1	Equate real and imaginary parts	
	a = -8	A1	Obtain correct answer	
	<i>b</i> = 25	A1	Obtain correct answer	

РМТ

PMT

РМТ

_

(Q3, June 2012)

		+			
23	(i)		M1	Attempt to clear fractions	
		+	M1	Attempt to expand and simplify to a quadratic	
		$5u^2 + 11u + 8 = 0$	A1	Obtain correct answer, must be an equation	
			[3]		
	(ii)	EITHER			
		$u = \frac{1}{r} - 1$	B1	State or imply by using roots of new quadratic	
			M1	Use their c/a	
		8	A1 FT	Obtain correct answer	
		$\overline{5}$			
			[3]		
		OR			
		$\frac{1}{\alpha+\beta}$ + 1	B1	Express in terms of $\alpha + \beta$ and $\alpha\beta$	
		αβ αβ			
			M1	Use values $-\frac{1}{2}$ and $\frac{5}{2}$ correctly	Must be values from original equation
		8	A1	Obtain correct answer	
		5			

(Q6, June 2012)

24	(i)		M1	Substitute and attempt to simplify	
24		$4u^2 + 6u + k + 2 = 0$	A1	Obtain correct answer, must be an equation	
			[2]		
	(ii)	Either			
			M1	Use products of roots of new quadratic i.e. use $(\pm) c/a$	
		k + 2	Alft	Obtain correct answer, from their quadratic	
		4			
			[2]		
		Or			
			M1	Use sum and product of roots of original equation	
		<i>k</i> + 2	A1	Obtain correct answer	
		4			

⁽Q4, Jan 2013)

25	(i)		M1	Attempt at complete expansion
-			A1	Obtain correct unsimplified answer
			A1	Obtain given answer correctly
			[3]	
	(ii)	Either $\sum \alpha = -p, \sum \alpha \beta = -4, \alpha \beta \gamma = -3$ $\frac{16-6p}{9}$	B1 M1 A1 M1 A1	State (anywhere) correct values for $\sum \alpha, \sum \alpha \beta, \sum \alpha \beta, \sum \alpha \beta \gamma$ Express given expression as a single fraction Obtain correct expression using (i) Use their values for sum of roots etc. in their expression Obtain correct answer
		Or	[5]	
		$9u^{3} + (6p - 16)u^{2} + (8 + p^{2})u - 1 = 0$ $\frac{16 - 6p}{9}$	B1 M1 A1 M1 A1	Use substitution $1/\sqrt{u}$ Rearrange appropriately and square out Obtain correct co-efficients of u^3 and u^2 Use $(+/-)b/a$ from their cubic Obtain correct answer

(Q9, Jan 2013)

26	Either		
	$\sum \alpha = -\frac{6}{k}, \ \sum \alpha \beta = \frac{1}{k}$	B1B1	Correct values stated or used
	$\sum \alpha \beta + 2\sum \alpha + 3$ $3 - \frac{11}{k}$	M1 A1 M1 A1	Expand brackets Obtain correct expression aef Use their values, in terms of <i>k</i> , for $\sum \alpha$ and $\sum \alpha \beta$ Obtain correct answer aef
	Or	[6]	
	$ku^{3} + (6-3k)u^{2} + (3k-11)u + 2 - k = 0$	B1 M1 A1 A1 M1	State or use substitution $x = u - 1$ Expand and attempt to simplify coefficients Obtain at least correct 1 st and 3 rd terms Use their " $\frac{c}{a}$ "
	$3-\frac{11}{k}$	A1	Obtain correct answer a.e.f.

+

(Q8, June 2013)